首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   43835篇
  免费   6824篇
  国内免费   4570篇
化学   30512篇
晶体学   422篇
力学   2570篇
综合类   338篇
数学   5247篇
物理学   16140篇
  2024年   27篇
  2023年   907篇
  2022年   873篇
  2021年   1380篇
  2020年   1762篇
  2019年   1633篇
  2018年   1408篇
  2017年   1300篇
  2016年   1953篇
  2015年   1916篇
  2014年   2409篇
  2013年   3068篇
  2012年   3928篇
  2011年   3962篇
  2010年   2663篇
  2009年   2494篇
  2008年   2774篇
  2007年   2492篇
  2006年   2278篇
  2005年   1946篇
  2004年   1581篇
  2003年   1215篇
  2002年   1068篇
  2001年   899篇
  2000年   846篇
  1999年   937篇
  1998年   830篇
  1997年   738篇
  1996年   814篇
  1995年   722篇
  1994年   646篇
  1993年   555篇
  1992年   522篇
  1991年   418篇
  1990年   384篇
  1989年   274篇
  1988年   251篇
  1987年   228篇
  1986年   164篇
  1985年   189篇
  1984年   149篇
  1983年   130篇
  1982年   95篇
  1981年   65篇
  1980年   56篇
  1979年   38篇
  1978年   28篇
  1977年   24篇
  1976年   33篇
  1975年   31篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
91.
Tunneled metal oxides such as α-Mn8O16 (hollandite) have proven to be compelling candidates for charge-storage materials in high-density batteries. In particular, the tunnels can support one-dimensional chains of K+ ions (which act as structure-stabilizing dopants) and H2O molecules, as these chains are favored by strong H-bonds and electrostatic interactions. In this work, we examine the role of water molecules in enhancing the stability of K+-doped α-Mn8O16 (cryptomelane). The combined experimental and theoretical analyses show that for high enough concentrations of water and tunnel-ions, H2O displaces K+ ions from their natural binding sites. This displacement becomes energetically favorable due to the formation of K2+ dimers, thereby modifying the stoichiometric charge of the system. These findings have potentially significant technological implications for the consideration of cryptomelane as a Li+/Na+ battery electrode. Our work establishes the functional role of water in altering the energetics and structural properties of cryptomelane, an observation that has frequently been overlooked in previous studies.

Water displaces potassium ions and initiates the formation of a homonuclear dimer ion (K2+) in the tunnels of hollandite.  相似文献   
92.
Propagation dynamics of the cosh-Airy vortex(CAiV) beams in a chiral medium is investigated analytically with Huygens–Fresnel diffraction integral formula. The results show that the CAiV beams are split into the left circularly polarized vortex(LCPV) beams and the right circularly polarized vortex(RCPV) beams with different propagation trajectories in the chiral medium. We mainly investigate the effect of the cosh parameter on the propagation process of the CAiV beams.The propagation characteristics, including intensity distribution, propagation trajectory, peak intensity, main lobe's intensity, Poynting vector, and angular momentum are discussed in detail. We find that the cosh parameter affects the intensity distribution of the CAiV beams but not its propagation trajectory. As the cosh parameter increases, the distribution areas of the LCPV and RCPV beams become wider, and the side lobe's intensity and peak intensity become larger. Besides, the main lobe's intensity of the LCPV and RCPV beams increase with the increase of the cosh parameter at a farther propagation distance, which is confirmed by the variation trend of the Poynting vector. It is significant that we can vary the cosh parameter to control the intensity distribution, main lobe's intensity, and peak intensity of the CAiV beams without changing the propagation trajectory. Our results may provide some support for applications of the CAiV beams in optical micromanipulation.  相似文献   
93.
Based on the surface passivation of n-type silicon in a silicon drift detector(SDD), we propose a new passivation structure of SiO2/Al2O3/SiO2 passivation stacks. Since the SiO2 formed by the nitric-acid-oxidation-of-silicon(NAOS)method has good compactness and simple process, the first layer film is formed by the NAOS method. The Al2O3 film is also introduced into the passivation stacks owing to exceptional advantages such as good interface characteristic and simple process. In addition, for requirements of thickness and deposition temperature, the third layer of the SiO2 film is deposited by plasma enhanced chemical vapor deposition(PECVD). The deposition of the SiO2 film by PECVD is a low-temperature process and has a high deposition rate, which causes little damage to the device and makes the SiO2 film very suitable for serving as the third passivation layer. The passivation approach of stacks can saturate dangling bonds at the interface between stacks and the silicon substrate, and provide positive charge to optimize the field passivation of the n-type substrate.The passivation method ultimately achieves a good combination of chemical and field passivations. Experimental results show that with the passivation structure of SiO2/Al2O3/SiO2, the final minority carrier lifetime reaches 5223 μs at injection of 5×1015 cm-3. When it is applied to the passivation of SDD, the leakage current is reduced to the order of nA.  相似文献   
94.
One of the most important multipartite entangled states, Greenberger–Horne–Zeilinger state (GHZ), serves as a fundamental resource for quantum foundation test, quantum communication and quantum computation. To increase the number of entangled particles, significant experimental efforts should been invested due to the complexity of optical setup and the difficulty in maintaining the coherence condition for high-fidelity GHZ state. Here, we propose an ultra-integrated scalable on-chip GHZ state generation scheme based on frequency combs. By designing several microrings pumped by different lasers, multiple partially overlapped quantum frequency combs are generated to supply as the basis for on-chip polarization-encoded GHZ state with each qubit occupying a certain spectral mode. Both even and odd numbers of GHZ states can be engineered with constant small number of integrated components and easily scaled up on the same chip by only adjusting one of the pump wavelengths. In addition, we give the on-chip design of projection measurement for characterizing GHZ states and show the reconfigurability of the state. Our proposal is rather simple and feasible within the existing fabrication technologies and we believe it will boost the development of multiphoton technologies.  相似文献   
95.
96.
Mesoporous carbon (m‐C) has potential applications as porous electrodes for electrochemical energy storage, but its applications have been severely limited by the inherent fragility and low electrical conductivity. A rational strategy is presented to construct m‐C into hierarchical porous structures with high flexibility by using a carbon nanotube (CNT) sponge as a three‐dimensional template, and grafting Pt nanoparticles at the m‐C surface. This method involves several controllable steps including solution deposition of a mesoporous silica (m‐SiO2) layer onto CNTs, chemical vapor deposition of acetylene, and etching of m‐SiO2, resulting in a CNT@m‐C core–shell or a CNT@m‐C@Pt core–shell hybrid structure after Pt adsorption. The underlying CNT network provides a robust yet flexible support and a high electrical conductivity, whereas the m‐C provides large surface area, and the Pt nanoparticles improves interfacial electron and ion diffusion. Consequently, specific capacitances of 203 and 311 F g?1 have been achieved in these CNT@m‐C and CNT@m‐C@Pt sponges as supercapacitor electrodes, respectively, which can retain 96 % of original capacitance under large degree compression.  相似文献   
97.
The layer‐by‐layer (LBL) assembly technique is an attractive method to make functional multilayer thin films and has been applied to fabricate a wide range of materials. LBL materials could improve optical transmittance and mechanical properties if the film components were covalently bonded. Covalently bonded nanocomposite multilayer films were prepared by employing hydrophilic aliphatic polyisocyanate (HAPI) as the reactive component, to react with Laponite and polyvinyl alcohol (PVA). FT‐IR spectra suggested that HAPI reacted with Laponite and PVA at ambient temperature rapidly. Ellipsometry measurement showed that the film thickness was in linear growth. The influences of HAPI on the optical, mechanical and thermal properties of the films were investigated by UV‐Vis spectroscopy, tensile stress measurement, DSC and TGA. The obtained results showed that the optical transmittance and mechanical strength were enhanced when the film components were covalently bonded by HAPI. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 545–551  相似文献   
98.
A novel type of supertetrahedral connectivity is exhibited by the 72‐atom discrete supercubooctahedron in (Cs6Cl)2Cs5[Ga15Ge9Se48] ( 1 ), which undergoes both cation and anion exchange, as revealed by unambiguous single‐crystal X‐ray diffraction data. Electronic‐structure studies helped to understand the Ge/Ga distribution.  相似文献   
99.
A disulfide intercalator toolbox was developed for site‐specific attachment of a broad variety of functional groups to proteins or peptides under mild, physiological conditions. The peptide hormone somatostatin (SST) served as model compound for intercalation into the available disulfide functionalization schemes starting from the intercalator or the reactive SST precursor before or after bioconjugation. A tetrazole–SST derivative was obtained that undergoes photoinduced cycloaddition in mammalian cells, which was monitored by live‐cell imaging.  相似文献   
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号